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Abstract—This paper proposes a new strategy for prototypes 
initialization in linear vector quantization algorithm (LVQ). 
Three principles which must be satisfied during the learning 
stage are shown in the paper. These principles are essential to 
guarantee appropriate learning for the LVQ algorithm. 
However, all versions of LVQ algorithms try to answer to one of 
the principles, but unfortunately contradicting with the other 
ones. The new strategy proposed in the paper aims to solve this 
issue and consists of two steps: (1) analyse the a-priori data set 
and (2) apply a pre-learning algorithm to initialize the 
prototypes. The pre-learned prototypes resulted from step 2 are 
used by the LVQ algorithm in the learning process. The 
examples presented in the case study and the criterion used to 
assess  the training performance of the prototypes reinforce that  
the training strategy  of the prototypes proposed in the paper 
provides better results in certain situations compared to classical 
LVQ algorithms. 

Keywords—LVQ algorithms, pattern recognition, learning, 
Self-Organizing Map. 

I. INTRODUCTION 

The LVQ algorithm [1] is a supervised learning algorithm 
that learns to classify data based on determining the optimal 
position of the prototypes. LVQ can be included in a broad 
family of learning algorithms based on Stochastic Gradient 
Descent [2]. LVQ has applications in different fields, such as: 
signal processing [3], fault diagnosis [4, 5], feature extraction 
[6,7], and many others. The LVQ algorithm has been improved 
during the years by many authors [8 , 9]. 

The main idea of the LVQ algorithm is to build a quantized 
approximation for the spatial distribution of the training 
vectors using a finite number of prototypes. After the learning 
process is finished, each prototype represents a subset of the 
data that has the same degree of similarity. The LVQ algorithm 
requires several factors to be defined before the learning 
process starts5, and they include: (1) the objective function, (2) 
the appropriate distance measure, (3) the optimization 
algorithm, (4) the optimal number of prototype vectors, and (5) 
the initial positions of the prototype vectors to avoid 
suboptimal solutions.  

The LVQ algorithm and its three versions LVQ1, LVQ2, 
and LVQ3 were proposed for the first time by Kohonen in [1]. 
The LVQ2 and LVQ3 algorithms use the concept of window to 

update the prototypes during the learning process. One of the 
conditions for updating the prototypes is that the new input 
data, or pattern, presented to the algorithm, must fall into the 
window. If the new pattern is outside the window, the pattern 
will be ignored and blocked in the process of prototypes 
learning. This is a method of selecting the patterns which will 
affect the prototypes during the learning process.        

For improving the performance of the LVQ network, a new 
weight-updating formula for prototypes is presented in [10]. In 
[11] the authors introduce an explicit cost function where the 
learning rule attempts to minimize such function. Selecting a 
subset from the training data set to update LVQ prototypes is 
introduced in [12], where the proposed method selects an 
updated set composed by a subset of points considered to be at 
the risk of being captured by another prototype from a different 
class.  

In the prototype learning process, it is necessary to take into 
account the following three principles: 

1. Specialization of prototypes. After learning, each 
prototype will get similar characteristics with a subset of 
patterns belonging to the class represented by the prototype. 

2. Every pattern from the training data set must participate 
in the prototype update (learning process). Otherwise, the 
characteristics of the non-participating patterns will not be 
transferred to the prototypes.  

3. Minimize as much as possible prototype removal if the 
pattern and the prototype belong to different classes. In this 
case the prototype is no longer updated if the patterns from the 
training set satisfy certain conditions. For instance (for LVQ2 
and LVQ3 algorithms), if the pattern is outside the window, it 
will not be used for prototype learning. 

In some situations the third principle is in contradiction 
with the first and the second principle. All versions of LVQ 
algorithms try to answer to one of the principles, but 
unfortunately contradicting with another. For instance, the 
window method used for the LVQ2 and LVQ3 algorithms 
satisfies, in some situations, the third principle, but, in the same 
time, does not satisfy the second principle. 

However, it is well-known that all LVQ algorithms and 
variations of the original LVQ-learning algorithm strongly 
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depend on the initialization of the prototypes [1, 3, 13]. The 
prototypes initialization and the training data set can often 
create a conflict among the three principles. The learning rules 
for the prototypes, without a-priori analysis of the training data 
set, lead to the impossibility of satisfying all three principles, at 
the same time. 

The new lemma and new theorem proposed in this paper 
will set the conditions that can guarantee a proper prototype 
allocation when the LVQ1 algorithm is applied. Although 
these conditions may not be fulfilled for complex data sets, the 
lemma and the theorem are important for finding instances 
when prototype training provides unacceptable solutions. Some 
of these cases are illustrated in the paper and, as a solution for 
these situations, a new method of prototype initialisation and 
pre-learning is implemented.  

The paper is organized as follows: in Section 2, the 
prototypes’ dynamic during the learning process is analysed, 
and a new lemma and theorem are introduced to guarantee 
optimal or acceptable solution for the LVQ algorithm. Based 
on the theoretical results from Section 2, a new algorithm for 
LVQ1 is proposed in Section 3, and its advantages are 
illustrated by several examples with simulated data (academic 
data set). In Section 4 the paper is concluded and some 
comments about future works are presented. 

II. EASE OF USE THE PROTOTYPES’ DYNAMIC DURING THE 

LEARNING PROCESS 

This section presents new theoretical results regarding the 
prototypes’ dynamic during the learning process with LVQ1 
algorithm. The prototypes’ dynamic strongly depends on the 
structure of the training data set. In most cases, the training 
data set has an irregular structure where it is impossible to 
consider all possible cases. However, without loss of 
generality, some representative situations will be considered in 
this section in order to illustrate the prototypes’ dynamic.     

Lemma. Consider ܺଵ and ܺଶ	the training sets for two classes 
which contain ݊ଵ	patterns and ݊ଶ	patterns respectively. The 
sets ܺଵ	 and 	ܺଶ	 are included in the convex domains ܥܦଵ 
and ଶܥܦ	 ( ܺଵ ⊂ ଵܥܦ , ܺଶ ⊂ ଶܥܦ ). For LVQ1 algorithm, 
assume that the following hypotheses are true:  
1) The learning rate is considered to be bounded in the 
interval [0 1], i.e. 0 < (ݐ)݇ ≤ 1;                  (1) 

2 ) ,ݔ)௫,௬∈భሼ݀ݔܽ݉ ሽ(ݕ < ݉݅݊௫ᇱ∈భ௬ᇱ∈మሼ݀(ݔ′, ,ݔ)ሼ݀	௫,௬∈మݔܽ݉ ሽ (2)(′ݕ ሽ(ݕ < ݉݅݊௫ᇱ∈భ௬ᇱ∈మሼ݀(ݔ′,  ሽ (3)(′ݕ

3) The prototypes ܼଵand 	ܼଶare initialized with patterns of 
both classes. Then, during the learning process, for the set of 
prototypes 	ܼଵand	ܼଶ, the following relations hold: max௫∈భ,௬∈భሼ݀(ݔ, ሽ(ݕ < min௫ᇲ∈Xమ,௬ᇱ∈భሼ݀(ݔ′, or equivalently,  ܼଵ	ሽ(′ݕ ⊂ ,ݔ)ଵ (4) max௫∈మ,௬∈Zమሼ݀ܥܦ ሽ(ݕ < min௫ᇲ∈Xమ,௬ᇱ∈భሼ݀(ݔ′,  or	ሽ(′ݕ

equivalently,  ܼଶ ⊂  ଶ        (5)ܥܦ
 

Proof. The LVQ1 algorithm is based on relations (1) and (2). 
Consider the following notations: ܺଵ = ሼݔଵሽ, ݅ = 1, ݊ଵതതതതതത	 are patterns from class 1,	ܺଶ = ሼݔଶሽ, ݅ =1, ݊ଶതതതതതത		are patterns from class 2 and ܼଵ = ሼݖଵሽ, ݅ = 1,  ଵതതതതതതതത are݊
prototypes associated to class 1,  ܼଶ = ሼݖଶሽ, ݅ = 1,  are the	ଶതതതതതതതത݊
prototypes associated to class 2. These prototypes will be 
initialized with patterns from each corresponding class.  

The following inclusions result from hypothesis 3:   ൛ሼݖଵሽୀଵ,భതതതതതതതതൟ ⊂ ଶሽୀଵ,మതതതതതതതതൟݖଵ (6) ൛ሼܥܦ ⊂  ଶ (7)ܥܦ
Considering hypothesis 2 (the inequalities (2) and (3)) and 

the inclusions (6) and (7) one can conclude that before first use 
of the LVQ1 algorithm, hypothesis 3 is satisfied, i.e. the 
inequalities (4) and (5) are satisfied.   

Now, assume that the pattern ሼݔଵ(ݐ)ሽ ∈ ܺଵ is used in the 
learning process by the LVQ1 algorithm. The inequality (4) is 
satisfied, so the closest prototype ሼݖଵሽ to the pattern	ሼݔଵ(ݐ)ሽ	of 
class 1 also belongs to class 1. Consequently, eq. (8) is used for 
the prototype update: ݖଵ(ݐ + 1) = (ݐ)ଵݖ + (ݐ)݇  (8)          [ଵ(t)ݖ-ଵ(t)ݔ]∙

According to the lemma hypothesis (1) (݇(ݐ) ∈ (0,1]), the 
update prototype {ݖଵ(ݐ + 1)} belongs to the line segment from ݖଵ(ݐ) to ݔଵ(t). Because ݔଵ(t) and ݖଵ(ݐ) belong to the convex 
domain ܥܦଵ , after the learning process, the prototype 
associated with class 1 (ݖଵ(ݐ + 1))  will also belong to the 
convex domain ܥܦଵ.	 In this case, inequality (4) remains true 
after the learning process.  

Similarly, it can be proven that the prototypes of class 2 
satisfy ineq. (5) after every stage of the learning process. 

Because the pattern ሼݔଵ(ݐ)ሽ was arbitrary chosen, we can 
conclude that inequalities (4) and (5) are true for each 
prototype and throughout the entire learning process.  

Observation: The new Lemma introduced in this paper proves 
that the prototypes will satisfy relations (6) and (7) after each 
learning stage during the entire learning process. Fig. 1 
illustrates the case when the patterns and the prototypes of both 
classes satisfy the lemma hypotheses. In this case the 
prototypes will never leave the domains in which they belong 
before the learning process. 

 
Fig. 1. The situation when the patterns and the prototypes of both classes 
satisfy the lemma hypotheses  ܥܦଵ – convex domain which includes the sets ܺଵ,ܼଵ,  ܥܦଶ – convex domain which includes the sets ܺଶ,ܼଶ,  
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Theorem. Consider ܺଵ  and ܺଶ   the training set vectors for 
two classes which contain patterns in ℝ. The set ܺଵ ⊂  ,1ܥܦ
where DC1 is a convex domain. The set ܺଶ  contains two 
subsets ܺଶଵ ⊂ ଶଵܥܦ , ܺଶଶ 	⊂ 	,ଶଶܥܦ with ܥܦଶଵ  and ܥܦଶଶ 
convex domains.  
Assuming the following hypotheses for the LVQ1 learning 
algorithm:               
 
1) The learning rate ݇(ݐ)	is always positive and is decreasing 
monotonically from 1, i.e. in  the  interval 
 (0, 1]: 
(ݐ)݇    = ܽ − ܾ ∙ ∋	a=1, b>0 , t , ݐ (0, ]. 
 
2)a. 	max௫,௬∈భሼ݀(ݔ, ሽ(ݕ < min௫ᇱ∈భ௬ᇱ∈మభሼ݀(ݔ′, ,ݔ)ሽ         (9) max௫,௬∈భሼ݀(′ݕ ሽ(ݕ < min௫ᇱ∈భ௬ᇱ∈మమሼ݀(ݔ′, ሽ (10)(′ݕ

  
b. max௫,௬∈మభሼ݀(ݔ, ሽ(ݕ < min௫ᇱ∈మభ௬ᇱ∈భ ሼ݀(ݔ′, ,ݔ)ሽ (11) max௫,௬∈మభሼ݀(′ݕ ሽ(ݕ < min௫ᇱ∈మభ௬ᇱ∈మమሼ݀(ݔ′,  ሽ (12)(′ݕ

c. max௫,௬∈మమሼ݀(ݔ, ሽ(ݕ < min௫ᇱ∈మమ௬ᇱ∈భ ሼ݀(ݔ′, ,ݔ)ሽ       (13) max௫,௬∈మమሼ݀(′ݕ ሽ(ݕ < min௫ᇱ∈మమ௬ᇱ∈మభሼ݀(ݔ′,  ሽ (14)(′ݕ

3) max௫∈మమ௬∈మభሼ݀(ݔ, ሽ(ݕ < min௫ᇱ∈మమ௬ᇱ∈భ ሼ݀(ݔ′,  ሽ (15)(′ݕ

 
4) The prototypes of class 1 are initialized only with patterns 
belonging to set ܺଵand the prototypes of class 2 are initialized 
only with patterns belonging to subset ܺଶଵ . Then, after the 
learning process, the patterns of the training set which belong 
to the subset ܺଶଶ	will only be represented by one prototype. 
 
Proof. Fig. 2 illustrates a situation when the theorem 
hypotheses are fulfilled.  

 
Fig. 2. A situation when the theorem hypotheses are fulfilled 

 
Consider the following notations: 

ܺଵ = ሼݔଵሽ, ݅ = 1, ݊ଵതതതതതത the patterns of the training data set which 
belong to class 1 and ܺଶଵ = ሼݔଶଵሽ, ݅ = 1, ݊ଶଵതതതതതതത  , ܺଶଶ =ሼݔଶଶሽ, ݅ = 1, ݊ଶଶതതതതതതത  the patterns of the training data set which 
belong to class 2.  

The prototypes associated with both classes are ܼଵ =ሼݖଵሽ, ݅ = 1, 	ଵതതതതതതതത݊ and 	ܼଶ = ሼݖଶሽ, ݅ = 1, ଶതതതതതതതത݊ , respectively. The 
set of initial prototypes under the hypothesis 4 of the theorem 
satisfy the relations: ܼଵ ⊂ ܺଵ (16) ܼଶ ⊂ ܺଶଵ         (17) 

Considering the theorem hypotheses and relations (16) and 
(17) the patterns and the prototypes of both classes verify the 
following relations: ൛ሼݔଵሽୀଵ,భതതതതതത ∪ ሼݖଵሽୀଵ,భതതതതതതതതൟ ⊂ ଶଵሽୀଵ,మభതതതതതതതതݔଵ (18)    ൛ሼܥܦ ∪ ሼݖଶଵሽୀଵ,మതതതതതതതതൟ ⊂ ଶଶሽୀଵ,మమതതതതതതതതൟݔଶଵ (19)   ൛ሼܥܦ ⊂    ଶଶ (20)ܥܦ

For the first stage of the learning process, the learning rate 
is ݇(ݐ) = ݐ)	1 = 0)  for all training set patterns used for 
prototypes’ updating by the learning algorithm.  

Now assume that during the learning process, the pattern ݔଵ ∈ ܺଵ  is used by the learning algorithm to update the 
prototypes. Taking into account relations (9), (10), (18), and 
Lemma one can conclude that if the closest prototype to the 
pattern ݔଵ belongs to class 1 before the learning stage, it will 
also belong to the same class after the learning stage. The 
prototype also belongs to the convex domain	ܥܦଵ. 

Consider the special case when the pattern ݔଵଶଶ  (the first 
pattern of the set Xଶଶ) is used by the algorithm to update the 
prototypes. Consider hypothesis 3 of the Theorem (i.e. the 
relation (15)), the closest prototype to the pattern ݔଵଶଶ is one of 
the prototypes associated with the set 	Xଶଵ		 .  We note this 
prototype with ݖ∗(ݐ). 

Eq. (21) is used for the prototype update:  ݖ∗(ݐ + 1) = (ݐ)∗ݖ + 1 ∙ ሾݔଶଶ − [(ݐ)∗ݖ =  ଶଶ    (21)ݔ
 
where the learning rate is 1 because this is the first learning 
stage of the learning process.  After that, the subset Xଶଶ will 
only contain one associated prototype. By considering relations 
(13), (14) and lemma, if the algorithm uses any other pattern 
from the subset Xଶଶ for the learning process, then the closest 
prototype to the pattern will also be ݖ∗(ݐ). In conclusion, the 
subset Xଶଶ	 will only be represented by one prototype after the 
learning process:	ݖ∗(ݐ) 	⊂  .ଶଶܥܦ

Observation 1: The prototype ݖ∗(ݐ) is always updated when a 
pattern of the subset Xଶଶ	  is used by the learning algorithm. 
After every learning stage, the updated prototype will also 
belong to the same domain	ܥܦଶଶ. 

A situation when the theorem hypotheses are satisfied is 
presented in Fig. 3. The initialization of the prototypes for class 
2 is randomized by using patterns from the subset 21. 

Fig. 3 shows that the subset 22 has only one prototype.   
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Fig. 3. Academic data set which verifies the theorem hypotheses 

 
Observation 2: If the training data set contains a large 

number of patterns, randomizing initial prototypes cannot 
guarantee that all sets of patterns with similar characteristics 
have allocated prototypes. For instance, in voice recognition 
applications, it is possible that the same speaker may have 
different subsets in the training data set. 

Observation 3: If hypothesis 3 of the theorem is not 
satisfied, the patterns of the subclass 22 are closer to the 
prototypes of class 1 than to the prototypes of the subclass 21. 
Thus, when the patterns from the subclass 22 are used in the 
learning process by the LVQ1 algorithm, the prototypes of 
class 1 are updated with relation (2) and they will be gradually 
removed from the patterns of the subclass 22. This situation is 
illustrated in fig. 4. 

 
Fig. 4. Academic data set which does not verify hypothesis 3 of the theorem 

III. A NEW STRATEGY FOR PROTOTYPE LEARNING USING LVQ1 

ALGORITHM. CASE STUDY 

As it was shown in section 2, the structure of the training 
data set plays an important role in the prototype learning stage. 
The structure of the learning data set can lead to unfavourable 
situations for the prototypes updating. In order to avoid this 
situation for cases when the lemma or theorem hypotheses are 
not fulfilled, a new algorithm is proposed in the following of 
this section. The main idea of this algorithm is to analyse the 
classes structure first, and then, to use Self-Organizing Map 
algorithm [1] for a-priori prototypes updating for each of the 
subclasses. The proposed algorithm will divide the classes 

which can create problems in subclasses. Consequently, the 
prototypes degree of representativeness will significantly 
increase.   

By analysing the structure of the training data set and by 
initialising the prototypes with patterns which belong to each 
subclass, it is possible to obtain correct results regarding the 
prototypes placement in the pattern space. A pre-learning 
strategy by using a procedure similar with Self-Organizing 
Map will avoid the instability of the LVQ1 algorithm.     

Consider a training data set with Ω1...Ωn, n classes, each 
containing M1...Mn  patterns. The new proposed strategy for 
prototype updating is as follows: 

1. The structure of each class is analysed by determining 
the number of subclasses corresponding to the patterns for all n 
classes.  

2. Pre-learning phase for the prototypes corresponding to 
each subclass using Self-Organizing Map. For each subclass, 
the number of prototypes is proportional to the number of 
patterns which belong to the sub-group, considering the total 
number of the patterns. By dividing the training data set into 
smaller subclasses we address the issues presented above 
which arise when the hypotheses of Theorem are not fulfilled. 
In this case, by proper allocation of the prototypes, only the 
conditions of the Lemma need to be satisfied to guarantee the 
performance of the LVQ1 algorithm. But even for complex 
training data sets, when neither Theorem nor Lemma 
conditions are fulfilled, the pre-learning phase can achieve 
better classification results for the LVQ1 training algorithm. 

3. The LVQ1 algorithm is applied to the prototypes 
initialized with the values obtained in step 2.   

The algorithm that implements the new learning strategy is 
shown in the following page. 

Observation: 
The patterns clustering of the class Ωi  into a number of 

subclasses (Step 1.1) is determined by either using the Basic 
ISODATA algorithm [15] or by minimising  the sum of the 
square errors. 

After training the prototypes with LVQ type algorithms, a 
test stage is required to verify that the patterns are correctly 
classified by the trained prototypes. 

For the evaluation of the learning algorithm performance a 
criterion is proposed that measures the accuracy degree with 
which the prototypes estimate the pattern repartition in their 
space.  

Suppose that a certain class Ω with nΩ patterns is 
represented by np prototypes, and each prototype represents ngj 

patterns, j=1, ..., np.  The patterns’ number is represented by 
the np  prototypes and the following equation is verified 

  ∑ ݊݃ୀଵ = ݊Ω.              (22)   

The estimation accuracy of the patterns’ repartition in their 
space  is given by the equation: 

  ܸ = ∑ ∑ ฮ߱ − ฮୀଵୀଵ = ݊Ω,          (23)   
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where ωi represents the pattern that is the nearest of the pj 
prototype.  

If the pj prototypes occupy a more central position inside 
the patterns space, then the value of the criterion decreases. 
The learning strategy proposed in this section is exemplified 
with an academic data set. Comparative results between the 
proposed strategy and LVQ type algorithms are presented. 

Fig. 5a shows a case when the training data set does not 
fulfil the Lemma or Theorem hypotheses, and the training was 
made with the LVQ1 algorithm. The prototypes could be 
removed from the patterns they were initially assigned with. 
Fig. 5a shows a situation where there is a subclass with no 

prototype because of the complex structure of the training data 
set. However, neither LVQ2 algorithm (fig. 5b), nor LVQ3 
algorithm (fig. 5c), leads to satisfactory results since the 
subclass remains without prototypes. In this example the 
patterns of class 2 are distributed in space, occupying a non-
compact area. In this case some patterns from class 2 are close 
to class 1 but, in the same time, some are away. This spatial 
distribution of the patterns, together with relation (2) will 
contribute to removing some prototypes of class 1 and class 2 
as it is shown in fig. 5a.  Fig. 5d shows the training result after 
the new proposed algorithm is used. 

 

Algorithm for the new proposed strategy
1. The index number of the class is initialized: i=1. 
    1.1  The patterns from the class Ωi are divided in an adequate number of subclasses. Consider that for the Ωi class, which has Mi 
patterns, we obtain gi subclasses noted with 
 ൛ܵܥൟୀଵ,ഢതതതതത,	each subclass having ܯ patterns.

  
    1.2. The index number of the subclass is initialized: k=1. 
        1.2.1  For each subclass ܵܥ we attach prototypes ൛ܼൟୀଵ,ഢೖതതതതതതതത  a-priori established, taking into account the appearance 

probability of the subclasses’ patterns in the global training data set.  The prototypes initialisation is made with patterns 
belonging to the subclass ܵܥ , randomly selected. 

        1.2.2  The iteration number N for the pre-learning stage is set. 
                       1.2.2.1  the pre-learning step t is initialized: t=1; 
                       1.2.2.2  the learning rate is updated: ݇(ݐ) = 1 −  ܰ/ݐ
             1.2.2.3  the index number of patterns from subclass ܵܥ is initialized: ݎ = 1; 
              1.2.2.4  the pattern ݔ ∈  ; is presented to the algorithmܥܵ
             1.2.2.5  the prototype zc which verifies the following relation is found: 

  minୀଵ,ഢೖതതതതതതതത൛ฮݔ − ฮൟݖ ݔ‖= −             ‖ݖ

                                    and then the prototype is updated with the relation 
ݐ)ݖ                                     + 1) = (ݐ)ݖ + (ݐ)݇ ∙ ሾݔ(ݐ) −  ;[(ݐ)ݖ
ݎ 1.2.2.6               = ݎ + 1; 
             1.2.2.7  if  ݎ ≤  ;if not – carry on ,{ܥܵ we move to the next pattern from subclass}, jump at 1.2.2.4ܯ
ݐ 1.2.2.8              = ݐ + 1; 
             1.2.2.9   if  ݐ < ܰ, jump at  1.2.2.2{we move to the next pre-learning stage }, if not – carry on. 
        1.2.3   ݇ = ݇ + 1. 
        1.2.4   If  ݇ ≤ ݊ ݃ , jump at  1.2.1 {we move to the next subclass }, if not – carry on.  
     1.3   	݅ = ݅ + 1. 
     1.4  If ݅ ≤ ݊, jump to 1.1{we move to the next class }, if not – carry on. 
2.  The classes’ prototypes are initialized with the subclasses’ prototypes obtained at the previous step. 
3.  We apply the classical Kohonen algorithm, using the prototypes initialized at the previous step. 
 

 
Fig. 5a. Classification results using LVQ1 algorithm 

 
Fig. 5b. Classification results using LVQ2 algorithm 
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Fig. 5c. Classification results using LVQ3 algorithm 

 
Fig. 5d. Classification results using the new learning strategy 

Analytical evaluation of the prototype training with 
algorithms: LVQ1, LVQ2, LVQ3 and the proposed strategy is 
shown in the table 1. 

It is necessary to mention that the proposed criterion is 
useful in case the patterns belong to Rq  (q> 3), in which 
situation a visual analysis cannot be performed. 

TABLE 1. ANALYTICAL EVALUATION OF THE PROTOTYPE TRAINING WITH LVQ 
ALGORITHMS (ACADEMIC DATA SET) 

Algorithm Classification 

100 % 

Number of patterns 
incorrectly classified 

Value of the 
criterion 

LVQ1 no 13 262.8358

LVQ2 no 13 116.7772

LVQ3 no 13 86.4451

Proposed 
Algorithm 

yes 0 39.4040

In step 1, using the BASIC Isodata algorithm, the class 2 is 
divided in two subclasses, subclass 2.1 and subclass 2.2 as it is 
shown in fig. 5d. For subclass 2.2 and class 1 the hypotheses of 
theorem 1 are not fulfilled. Because the patterns of subclass 2.1 
are grouped, in this case we will not have the problems shown 
in fig. 5a, when the patterns of the class 2 were distributed in 
space, occupying a large area. In step 2 the prototypes were 
allocated in the pattern space. In step 3, which in fact is LVQ1 

algorithm, the prototypes for subclass 2.2 are updated because 
the theorem’s hypotheses are fulfilled. The prototypes for class 
1 and subclass 2.1 are updated using classical LVQ1 updating 
rules [1] in order to avoid the situation when a prototype that 
belongs to a class becomes closer to the patterns from another 
class. In practical applications, the patterns have multimodal 
distribution [13,14] and in this case it is necessary to analyse 
the training data set prior to the learning process. It should be 
mentioned that in the previous examples, when the prototypes 
were removed from their corresponding class, the prototype 
learning process principles proposed in section 1 were not 
fulfilled. In this case we need to address the third principle in 
order to improve prototype learning using the LVQ1 algorithm. 

 

IV. CONCLUSIONS AND FURTHER RESEARCH 

The paper presents an efficient algorithm for prototypes 
learning with LVQ algorithm when the patterns have a 
multimodal and irregular distribution. Three principles, to be 
satisfied during the learning process, were proposed. To 
support these principles a new lemma and a new theorem were 
proposed in the paper. The lemma and the theorem prove that 
the data set structure and the prototypes initialization play a 
crucial role for obtaining acceptable results. In this context, 
Section 3 proposes a new algorithm for prototypes updating. 
With the new algorithm, in step 1 the learning data set structure 
is analysed. In step 2 the Self-Organizing Map algorithm for 
prototypes (a pre-learning stage for each of the subclasses 
resulted in step 1) is used. A comparison between the new 
strategy and the classic LVQ algorithms was illustrated in 
Sections 3 and 4, highlighting that using the proposed 
algorithm unexpected situations during LVQ training are 
avoided.  

Also in Section 3 we proposed a criterion to evaluate the 
training stage by computing the estimation accuracy of the 
pattern repartition in their space. 

Future research will focus on two directions: one direction 
will be to analyse the class’ structure in order to establish an 
appropriate number of subclasses, in which the class may be 
divided; another direction will be the evaluation of both the 
learning phase and the learning results. 
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